Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Cancer Discov ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563906

RESUMO

IL-2 signals pleiotropically on diverse cell types, some of which contribute to therapeutic activity against tumors, while others drive undesired activity, such as immunosuppression or toxicity. We explored the theory that targeting of IL-2 to CD8+ T cells, which are key anti-tumor effectors, could enhance its therapeutic index. To this aim, we developed AB248, CD8 cis-targeted IL-2 that demonstrates over 500-fold preference for CD8+ T cells over NK and Treg cells, which may contribute to toxicity and immunosuppression, respectively. AB248 recapitulated IL-2's effects on CD8+ T cells in vitro and induced selective expansion of CD8+ T cells in primates. In mice, an AB248 surrogate demonstrated superior anti-tumor activity and enhanced tolerability as compared to an untargeted IL-2RBy agonist. Efficacy was associated with expansion and phenotypic enhancement of tumor-infiltrating CD8+ T cells, including the emergence of a "better effector" population. These data support the potential utility of AB248 in clinical settings.

2.
Trends Plant Sci ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38658292

RESUMO

Panomics is an approach to integrate multiple 'omics' datasets, generated using different individuals or natural variations. Considering their diverse phenotypic spectrum, the phenome is inherently associated with panomics-based science, which is further combined with genomics, transcriptomics, metabolomics, and other omics techniques, either independently or collectively. Panomics has been accelerated through recent technological advancements in the field of genomics that enable the detection of population-wide structural variations (SVs) and hence offer unprecedented insights into the genetic variations contributing to important agronomic traits. The present review provides the recent trends of panomics-driven gene discovery toward various traits related to plant development, stress tolerance, accumulation of specialized metabolites, and domestication/dedomestication. In addition, the success stories are highlighted in the broader context of enhancing crop productivity.

4.
Cell ; 187(5): 1191-1205.e15, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38366592

RESUMO

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Microbioma Gastrointestinal , Sorbitol , Animais , Camundongos , Antibacterianos/farmacologia , Butiratos , Clostridium , Escherichia coli , Sorbitol/metabolismo
5.
Sci Rep ; 14(1): 4567, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403625

RESUMO

Development of high yielding cowpea varieties coupled with good taste and rich in essential minerals can promote consumption and thus nutrition and profitability. The sweet taste of cowpea grain is determined by its sugar content, which comprises mainly sucrose and galacto-oligosaccharides (GOS) including raffinose and stachyose. However, GOS are indigestible and their fermentation in the colon can produce excess intestinal gas, causing undesirable bloating and flatulence. In this study, we aimed to examine variation in grain sugar and mineral concentrations, then map quantitative trait loci (QTLs) and estimate genomic-prediction (GP) accuracies for possible application in breeding. Grain samples were collected from a multi-parent advanced generation intercross (MAGIC) population grown in California during 2016-2017. Grain sugars were assayed using high-performance liquid chromatography. Grain minerals were determined by inductively coupled plasma-optical emission spectrometry and combustion. Considerable variation was observed for sucrose (0.6-6.9%) and stachyose (2.3-8.4%). Major QTLs for sucrose (QSuc.vu-1.1), stachyose (QSta.vu-7.1), copper (QCu.vu-1.1) and manganese (QMn.vu-5.1) were identified. Allelic effects of major sugar QTLs were validated using the MAGIC grain samples grown in West Africa in 2017. GP accuracies for minerals were moderate (0.4-0.58). These findings help guide future breeding efforts to develop mineral-rich cowpea varieties with desirable sugar content.


Assuntos
Locos de Características Quantitativas , Vigna , Locos de Características Quantitativas/genética , Vigna/genética , Açúcares , Melhoramento Vegetal , Minerais , Grão Comestível/genética , Genômica , Sacarose
6.
Sci Transl Med ; 16(729): eadi1572, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198572

RESUMO

CD8+ T cells are key antiviral effectors against hepatitis B virus (HBV), yet their number and function can be compromised in chronic infections. Preclinical HBV models displaying CD8+ T cell dysfunction showed that interleukin-2 (IL-2)-based treatment, unlike programmed cell death ligand 1 (PD-L1) checkpoint blockade, could reverse this defect, suggesting its therapeutic potential against HBV. However, IL-2's effectiveness is hindered by its pleiotropic nature, because its receptor is found on various immune cells, including regulatory T (Treg) cells and natural killer (NK) cells, which can counteract antiviral responses or contribute to toxicity, respectively. To address this, we developed a cis-targeted CD8-IL2 fusion protein, aiming to selectively stimulate dysfunctional CD8+ T cells in chronic HBV. In a mouse model, CD8-IL2 boosted the number of HBV-reactive CD8+ T cells in the liver without substantially altering Treg or NK cell counts. These expanded CD8+ T cells exhibited increased interferon-γ and granzyme B production, demonstrating enhanced functionality. CD8-IL2 treatment resulted in substantial antiviral effects, evidenced by marked reductions in viremia and antigenemia and HBV core antigen-positive hepatocytes. In contrast, an untargeted CTRL-IL2 led to predominant NK cell expansion, minimal CD8+ T cell expansion, negligible changes in effector molecules, and minimal antiviral activity. Human CD8-IL2 trials in cynomolgus monkeys mirrored these results, achieving a roughly 20-fold increase in peripheral blood CD8+ T cells without affecting NK or Treg cell numbers. These data support the development of CD8-IL2 as a therapy for chronic HBV infection.


Assuntos
Hepatite B Crônica , Interleucina-2 , Humanos , Animais , Camundongos , Vírus da Hepatite B , Linfócitos T CD8-Positivos , Hepatite B Crônica/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
7.
Psychophysiology ; 61(3): e14485, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966011

RESUMO

Television game shows have proven to be a valuable resource for studying human behavior under conditions of high stress and high stakes. However, previous work has focused mostly on choices-ignoring much of the rich visual information that is available on screen. Here, we take a first step to extracting more of this information by investigating the response times and blinking of contestants in the BBC show Mastermind. In Mastermind, contestants answer rapid-fire quiz questions while a camera slowly zooms in on their faces. By labeling contestants' behavior and blinks from 25 episodes, we asked how accuracy, response times, and blinking varied over the course of the game. For accuracy and response times, we tested whether contestants responded more accurately and more slowly after an error-exhibiting the "post-error increase in accuracy" and "post-error slowing" which has been repeatedly observed in the lab. For blinking, we tested whether blink rates varied according to the cognitive demands of the game-decreasing during periods of cognitive load, such as when pondering a response, and increasing at event boundaries in the task, such as the start of a question. In contrast to the lab, evidence for post-error changes in accuracy and response time was weak, with only marginal effects observed. In line with the lab, blinking varied over the course of the game much as we predicted. Overall, our findings demonstrate the potential of extracting dynamic signals from game shows to study the psychophysiology of behavior in the real world.


Assuntos
Piscadela , Televisão , Humanos , Tempo de Reação , Psicofisiologia
9.
J Exp Bot ; 75(3): 1051-1062, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37864556

RESUMO

Identification and characterization of soybean germplasm and gene(s)/allele(s) for salt tolerance is an effective way to develop improved varieties for saline soils. Previous studies identified GmCHX1 (Glyma03g32900) as a major salt tolerance gene in soybean, and two main functional variations were found in the promoter region (148/150 bp insertion) and the third exon with a retrotransposon insertion (3.78 kb). In the current study, we identified four salt-tolerant soybean lines, including PI 483460B (Glycine soja), carrying the previously identified salt-sensitive variations at GmCHX1, suggesting new gene(s) or new functional allele(s) of GmCHX1 in these soybean lines. Subsequently, we conducted quantitative trait locus (QTL) mapping in a recombinant-inbred line population (Williams 82 (salt-sensitive) × PI 483460B) to identify the new salt tolerance loci/alleles. A new locus, qSalt_Gm18, was mapped on chromosome 18 associated with leaf scorch score. Another major QTL, qSalt_Gm03, was identified to be associated with chlorophyll content ratio and leaf scorch score in the same chromosomal region of GmCHX1 on chromosome 3. Novel variations in a STRE (stress response element) cis-element in the promoter region of GmCHX1 were found to regulate the salt-inducible expression of the gene in these four newly identified salt-tolerant lines including PI 483460B. This new allele of GmCHX1 with salt-inducible expression pattern provides an energy cost efficient (conditional gene expression) strategy to protect soybean yield in saline soils without yield penalty under non-stress conditions. Our results suggest that there might be no other major salt tolerance locus similar to GmCHX1 in soybean germplasm, and further improvement of salt tolerance in soybean may rely on gene-editing techniques instead of looking for natural variations.


Assuntos
Locos de Características Quantitativas , /genética , Tolerância ao Sal/genética , Regiões Promotoras Genéticas/genética , Solo , Expressão Gênica
10.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069125

RESUMO

In patients with portal hypertension, there are many complications including cardiovascular abnormalities, hepatorenal syndrome, ascites, variceal bleeding, and hepatic encephalopathy. The underlying mechanisms are not yet completely clarified. It is well known that portal hypertension causes mesenteric congestion which produces reactive oxygen species (ROS). ROS has been associated with intestinal mucosal injury, increased intestinal permeability, enhanced gut bacterial overgrowth, and translocation; all these changes result in increased endotoxin and inflammation. Portal hypertension also results in the development of collateral circulation and reduces liver mass resulting in an overall increase in endotoxin/bacteria bypassing detoxication and immune clearance in the liver. Endotoxemia can in turn aggravate oxidative stress and inflammation, leading to a cycle of gut barrier dysfunction → endotoxemia → organ injury. The phenotype of cardiovascular abnormalities includes hyperdynamic circulation and cirrhotic cardiomyopathy. Oxidative stress is often accompanied by inflammation; thus, blocking oxidative stress can minimize the systemic inflammatory response and alleviate the severity of cardiovascular diseases. The present review aims to elucidate the role of oxidative stress in cirrhosis-associated cardiovascular abnormalities and discusses possible therapeutic effects of antioxidants on cardiovascular complications of cirrhosis including hyperdynamic circulation, cirrhotic cardiomyopathy, and hepatorenal syndrome.


Assuntos
Cardiomiopatias , Anormalidades Cardiovasculares , Endotoxemia , Varizes Esofágicas e Gástricas , Síndrome Hepatorrenal , Hipertensão Portal , Humanos , Varizes Esofágicas e Gástricas/complicações , Síndrome Hepatorrenal/complicações , Espécies Reativas de Oxigênio/farmacologia , Endotoxemia/complicações , Hemorragia Gastrointestinal , Cirrose Hepática/terapia , Hipertensão Portal/complicações , Estresse Oxidativo , Inflamação/complicações , Cardiomiopatias/complicações , Anormalidades Cardiovasculares/complicações , Endotoxinas/farmacologia
11.
Plant Genome ; 16(4): e20415, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38084377

RESUMO

Soybean [Glycine max (L.) Merr.] is a globally important crop due to its valuable seed composition, versatile feed, food, and industrial end-uses, and consistent genetic gain. Successful genetic gain in soybean has led to widespread adaptation and increased value for producers, processors, and consumers. Specific focus on the nutritional quality of soybean seed composition for food and feed has further elucidated genetic knowledge and bolstered breeding progress. Seed components are historical and current targets for soybean breeders seeking to improve nutritional quality of soybean. This article reviews genetic and genomic foundations for improvement of nutritionally important traits, such as protein and amino acids, oil and fatty acids, carbohydrates, and specific food-grade considerations; discusses the application of advanced breeding technology such as CRISPR/Cas9 in creating seed composition variations; and provides future directions and breeding recommendations regarding soybean seed composition traits.


Assuntos
Melhoramento Vegetal , /genética , Fenótipo , Genômica , Valor Nutritivo
12.
Plants (Basel) ; 12(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37960065

RESUMO

Understanding the genetic basis of seed Ni and Mo is essential. Since soybean is a major crop in the world and a major source for nutrients, including Ni and Mo, the objective of the current research was to map genetic regions (quantitative trait loci, QTL) linked to Ni and Mo concentrations in soybean seed. A recombinant inbred line (RIL) population was derived from a cross between 'Forrest' and 'Williams 82' (F × W82). A total of 306 lines was used for genotyping using 5405 single nucleotides polymorphism (SNP) markers using Infinium SNP6K BeadChips. A two-year experiment was conducted and included the parents and the RIL population. One experiment was conducted in 2018 in North Carolina (NC), and the second experiment was conducted in Illinois in 2020 (IL). Logarithm of the odds (LOD) of ≥2.5 was set as a threshold to report identified QTL using the composite interval mapping (CIM) method. A wide range of Ni and Mo concentrations among RILs was observed. A total of four QTL (qNi-01, qNi-02, and qNi-03 on Chr 2, 8, and 9, respectively, in 2018, and qNi-01 on Chr 20 in 2020) was identified for seed Ni. All these QTL were significantly (LOD threshold > 2.5) associated with seed Ni, with LOD scores ranging between 2.71-3.44, and with phenotypic variance ranging from 4.48-6.97%. A total of three QTL for Mo (qMo-01, qMo-02, and qMo-03 on Chr 1, 3, 17, respectively) was identified in 2018, and four QTL (qMo-01, qMo-02, qMo-03, and qMo-04, on Chr 5, 11, 14, and 16, respectively) were identified in 2020. Some of the current QTL had high LOD and significantly contributed to the phenotypic variance for the trait. For example, in 2018, Mo QTL qMo-01 on Chr 1 had LOD of 7.8, explaining a phenotypic variance of 41.17%, and qMo-03 on Chr 17 had LOD of 5.33, with phenotypic variance explained of 41.49%. In addition, one Mo QTL (qMo-03 on Chr 14) had LOD of 9.77, explaining 51.57% of phenotypic variance related to the trait, and another Mo QTL (qMo-04 on Chr 16) had LOD of 7.62 and explained 49.95% of phenotypic variance. None of the QTL identified here were identified twice across locations/years. Based on a search of the available literature and of SoyBase, the four QTL for Ni, identified on Chr 2, 8, 9, and 20, and the five QTL associated with Mo, identified on Chr 1, 17, 11, 14, and 16, are novel and not previously reported. This research contributes new insights into the genetic mapping of Ni and Mo, and provides valuable QTL and molecular markers that can potentially assist in selecting Ni and Mo levels in soybean seeds.

13.
Plant Genome ; 16(4): e20400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940622

RESUMO

Breeding for increased protein without a reduction in oil content in soybeans [Glycine max (L.) Merr.] is a challenge for soybean breeders but an expected goal. Many efforts have been made to develop new soybean varieties with high yield in combination with desirable protein and/or oil traits. An elite line, R05-1415, was reported to be high yielding, high protein, and low oil. Several significant quantitative trait loci (QTL) for protein and oil were reported in this line, but many of them were unstable across environments or genetic backgrounds. Thus, a new study under multiple field environments using the Infinium BARCSoySNP6K BeadChips was conducted to detect and confirm stable genomic loci for these traits. Genetic analyses consistently detected a single major genomic locus conveying these two traits with remarkably high phenotypic variation explained (R2 ), varying between 24.2% and 43.5%. This new genomic locus is located between 25.0 and 26.7 Mb, distant from the previously reported QTL and did not overlap with other commonly reported QTL and the recently cloned gene Glyma.20G085100. Homolog analysis indicated that this QTL did not result from the paracentric chromosome inversion with an adjacent genomic fragment that harbors the reported QTL. The pleiotropic effect of this QTL could be a challenge for improving protein and oil simultaneously; however, a further study of four candidate genes with significant expressions in the seed developmental stages coupled with haplotype analysis may be able to pinpoint causative genes. The functionality and roles of these genes can be determined and characterized, which lay a solid foundation for the improvement of protein and oil content in soybeans.


Assuntos
Melhoramento Vegetal , Mapeamento Cromossômico , Genômica , Sementes/genética , Sementes/metabolismo , Óleos de Plantas
14.
Front Plant Sci ; 14: 1294659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023839

RESUMO

The nutritional value of soybean [Glycine max (L.) Merr.] for animals is influenced by soluble carbohydrates, such as sucrose and stachyose. Although sucrose is nutritionally desirable, stachyose is an antinutrient causing diarrhea and flatulence in non-ruminant animals. We conducted a genome-wide association study of 220 soybean accessions using 21,317 single nucleotide polymorphisms (SNPs) from the SoySNP50K iSelect Beadchip data to identify significant SNPs associated with sucrose and stachyose content. Seven significant SNPs were identified for sucrose content across chromosomes (Chrs.) 2, 8, 12, 17, and 20, while thirteen significant SNPs were identified for stachyose content across Chrs. 2, 5, 8, 9, 10, 13, 14, and 15. Among those significant SNPs, three sucrose-related SNPs on Chrs. 8 and 17 were novel, while twelve stachyose-related SNPs on Chrs. 2, 5, 8, 9, 10, 13, 14, and 15 were novel. Based on Phytozome, STRING, and GO annotation, 17 and 24 candidate genes for sucrose and stachyose content, respectively, were highly associated with the carbohydrate metabolic pathway. Among these, the publicly available RNA-seq Atlas database highlighted four candidate genes associated with sucrose (Glyma.08g361200 and Glyma.17g258100) and stachyose (Glyma.05g025300 and Glyma.13g077900) content, which had higher gene expression levels in developing seed and multiple parts of the soybean plant. The results of this study will extend knowledge of the molecular mechanism and genetic basis underlying sucrose and stachyose content in soybean seed. Furthermore, the novel candidate genes and SNPs can be valuable genetic resources that soybean breeders may utilize to modify carbohydrate profiles for animal and human usage.

15.
Plant Phenomics ; 5: 0097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780968

RESUMO

Nutrient-efficient root system architecture (RSA) is becoming an important breeding objective for generating crop varieties with improved nutrient and water acquisition efficiency. Genetic variants shaping soybean RSA is key in improving nutrient and water acquisition. Here, we report on the use of an improved 2-dimensional high-throughput root phenotyping platform that minimizes background noise by imaging pouch-grown root systems submerged in water. We also developed a background image cleaning Python pipeline that computationally removes images of small pieces of debris and filter paper fibers, which can be erroneously quantified as root tips. This platform was used to phenotype root traits in 286 soybean lines genotyped with 5.4 million single-nucleotide polymorphisms. There was a substantially higher correlation in manually counted number of root tips with computationally quantified root tips (95% correlation), when the background was cleaned of nonroot materials compared to root images without the background corrected (79%). Improvements in our RSA phenotyping pipeline significantly reduced overestimation of the root traits influenced by the number of root tips. Genome-wide association studies conducted on the root phenotypic data and quantitative gene expression analysis of candidate genes resulted in the identification of 3 putative positive regulators of root system depth, total root length and surface area, and root system volume and surface area of thicker roots (DOF1-like zinc finger transcription factor, protein of unknown function, and C2H2 zinc finger protein). We also identified a putative negative regulator (gibberellin 20 oxidase 3) of the total number of lateral roots.

16.
Front Plant Sci ; 14: 1230068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877091

RESUMO

The adoption of dicamba-tolerant (DT) soybean in the United States resulted in extensive off-target dicamba damage to non-DT vegetation across soybean-producing states. Although soybeans are highly sensitive to dicamba, the intensity of observed symptoms and yield losses are affected by the genetic background of genotypes. Thus, the objective of this study was to detect novel marker-trait associations and expand on previously identified genomic regions related to soybean response to off-target dicamba. A total of 551 non-DT advanced breeding lines derived from 232 unique bi-parental populations were phenotyped for off-target dicamba across nine environments for three years. Breeding lines were genotyped using the Illumina Infinium BARCSoySNP6K BeadChip. Filtered SNPs were included as predictors in Random Forest (RF) and Support Vector Machine (SVM) models in a forward stepwise selection loop to identify the combination of SNPs yielding the highest classification accuracy. Both RF and SVM models yielded high classification accuracies (0.76 and 0.79, respectively) with minor extreme misclassifications (observed tolerant predicted as susceptible, and vice-versa). Eight genomic regions associated with off-target dicamba tolerance were identified on chromosomes 6 [Linkage Group (LG) C2], 8 (LG A2), 9 (LG K), 10 (LG O), and 19 (LG L). Although the genetic architecture of tolerance is complex, high classification accuracies were obtained when including the major effect SNP identified on chromosome 6 as the sole predictor. In addition, candidate genes with annotated functions associated with phases II (conjugation of hydroxylated herbicides to endogenous sugar molecules) and III (transportation of herbicide conjugates into the vacuole) of herbicide detoxification in plants were co-localized with significant markers within each genomic region. Genomic prediction models, as reported in this study, can greatly facilitate the identification of genotypes with superior tolerance to off-target dicamba.

17.
Pediatr Dermatol ; 40(6): 996-1002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37845188

RESUMO

BACKGROUND/OBJECTIVES: Ulceration is a common complication of infantile hemangioma (IH). Severe, persistent ulceration occurs in a minority of patients. This study aims to characterize the clinical features of IH with aggressive ulceration (AU). METHODS: Multicenter retrospective study of clinical features of IH with AU. RESULTS: Thirty-five patients with AU were identified and included in the study. The majority of AU occurred in segmental IH (23/35, 65%). Segmental IH with AU were large (≥10 cm2 ; 16/23, 69%, p < .001) with a thin (<3 mm) superficial component (16/23, 69%, p < .001). Localized IH with AU had a thick (>3 mm) superficial component (11/12, 92%, p < .001). All diaper area IH with AU (9/35) were segmental with thin superficial component (100%, p = .02). IH with AU in the head/neck (10/35) were more commonly localized (67%) and mixed (62.5%), while segmental, thick superficial morphology was more common on trunk (9/35) and upper extremities (7/35). CONCLUSIONS: IH resulting in AU differ in clinical features by anatomic site. Those in the diaper area are nearly always segmental with thin superficial component, whereas other sites tend to be localized, mixed, with thick superficial component. These distinct phenotypes may prove useful in the clinical setting for physicians to identify patterns of IH ulceration with increased risk of aggressive, persistent ulceration.


Assuntos
Hemangioma Capilar , Hemangioma , Neoplasias Cutâneas , Humanos , Lactente , Estudos Retrospectivos , Hemangioma Capilar/complicações , Hemangioma/complicações , Hemangioma/diagnóstico , Extremidade Superior , Pele , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/diagnóstico
18.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834282

RESUMO

Late embryogenesis abundant (LEA) proteins play important roles in regulating plant growth and responses to various abiotic stresses. In this research, a genome-wide survey was conducted to recognize the LEA genes in Glycine max. A total of 74 GmLEA was identified and classified into nine subfamilies based on their conserved domains and the phylogenetic analysis. Subcellular localization, the duplication of genes, gene structure, the conserved motif, and the prediction of cis-regulatory elements and tissue expression pattern were then conducted to characterize GmLEAs. The expression profile analysis indicated that the expression of several GmLEAs was a response to drought and salt stress. The co-expression-based gene network analysis suggested that soybean LEA proteins may exert regulatory effects through the metabolic pathways. We further explored GnLEA4_19 function in Arabidopsis and the results suggests that overexpressed GmLEA4_19 in Arabidopsis increased plant height under mild or serious drought stress. Moreover, the overexpressed GmLEA4_19 soybean also showed a drought tolerance phenotype. These results indicated that GmLEA4_19 plays an important role in the tolerance to drought and will contribute to the development of the soybean transgenic with enhanced drought tolerance and better yield. Taken together, this study provided insight for better understanding the biological roles of LEA genes in soybean.


Assuntos
Arabidopsis , /metabolismo , Proteínas de Plantas/metabolismo , Secas , Filogenia , Arabidopsis/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
19.
Plants (Basel) ; 12(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836238

RESUMO

Soybean seed sugars are among the most abundant beneficial compounds for human and animal consumption in soybean seeds. Higher seed sugars such as sucrose are desirable as they contribute to taste and flavor in soy-based food. Therefore, the objectives of this study were to use the 'Forrest' by 'Williams 82' (F × W82) recombinant inbred line (RIL) soybean population (n = 309) to identify quantitative trait loci (QTLs) and candidate genes that control seed sugar (sucrose, stachyose, and raffinose) contents in two environments (North Carolina and Illinois) over two years (2018 and 2020). A total of 26 QTLs that control seed sugar contents were identified and mapped on 16 soybean chromosomes (chrs.). Interestingly, five QTL regions were identified in both locations, Illinois and North Carolina, in this study on chrs. 2, 5, 13, 17, and 20. Amongst 57 candidate genes identified in this study, 16 were located within 10 Megabase (MB) of the identified QTLs. Amongst them, a cluster of four genes involved in the sugars' pathway was collocated within 6 MB of two QTLs that were detected in this study on chr. 17. Further functional validation of the identified genes could be beneficial in breeding programs to produce soybean lines with high beneficial sucrose and low raffinose family oligosaccharides.

20.
Plant Genome ; 16(4): e20382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37749941

RESUMO

Complete, gapless telomere-to-telomere chromosome assemblies are a prerequisite for comprehensively investigating the architecture of complex regions, like centromeres or telomeres and removing uncertainties in the order, spacing, and orientation of genes. Using complementary genomics technologies and assembly algorithms, we developed highly contiguous, nearly gapless, genome assemblies for two economically important soybean [Glycine max (L.) Merr] cultivars (Williams 82 and Lee). The centromeres were distinctly annotated on all the chromosomes of both assemblies. We further found that the canonical telomeric repeats were present at the telomeres of all chromosomes of both Williams 82 and Lee genomes. A total of 10 chromosomes in Williams 82 and eight in Lee were entirely reconstructed in single contigs without any gap. Using the combination of ab initio prediction, protein homology, and transcriptome evidence, we identified 58,287 and 56,725 protein-coding genes in Williams 82 and Lee, respectively. The genome assemblies and annotations will serve as a valuable resource for studying soybean genomics and genetics and accelerating soybean improvement.


Assuntos
Genoma , /genética , Genômica , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...